A Second-Order Finite Difference Method for Two-Dimensional Fractional Percolation Equations

نویسندگان

  • Boling Guo
  • Qiang Xu
  • Ailing Zhu
چکیده

A finite difference method which is second-order accurate in time and in space is proposed for two-dimensional fractional percolation equations. Using the Fourier transform, a general approximation for the mixed fractional derivatives is analyzed. An approach based on the classical Crank-Nicolson scheme combined with the Richardson extrapolation is used to obtain temporally and spatially second-order accurate numerical estimates. Consistency, stability and convergence of the method are established. Numerical experiments illustrating the effectiveness of the theoretical analysis are provided. AMS subject classifications: 65M06, 26A33, 35R11

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

On the existence of solution for a $k$-dimensional system of three points nabla fractional finite difference equations

In this paper, we investigate the existence of solution for a k-dimensional system of three points nabla fractional finite difference equations. Also, we present an example to illustrate our result.

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

A finite difference technique for solving variable-order‎ ‎fractional integro-differential equations

‎In this article‎, we use a finite difference technique‎ ‎to solve variable-order fractional integro-differential equations‎ ‎(VOFIDEs‎, ‎for short)‎. ‎In these equations‎, ‎the variable-order fractional integration(VOFI) and‎ ‎variable-order fractional derivative (VOFD) are described in the‎ ‎Riemann-Liouville's and Caputo's sense,respectively‎. ‎Numerical experiments‎, ‎consisting of two exam...

متن کامل

The Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order

Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016